Compartilhar no Facebook
Compartilhar no Twitter
Compartilhe no LinkedIn

Capacitor de filme empilhado 15nf

We are looking for bulk inquiries for Metallized Polypropylene Capacitor, MPC Series encased capacitors, etc. Metalized Capacitors are available with different values of general and value ratings. Film capacitors can also be used in a more conventional way as voltage-smoothing capacitors, filters, and audio crossovers. A stacked film capacitor, also known as a multi-layer film capacitor or MLCC (Multi-Layer Ceramic Capacitor), is a type of electronic capacitor that consists of multiple layers of thin ceramic dielectric material stacked on top of each other, with metal electrodes interleaved between the layers. These capacitors are widely used in electronic circuits due to their high capacitance density, reliability, and compact size. 

Descrição do produto

Film capacitors can also be used in a more conventional way as voltage-smoothing capacitors, filters, and audio crossovers. They can be used to store energy and release it in a high-current pulse when needed. High-current electrical pulses are used to power pulsed lasers or generate lighting discharges.

O dielétrico de um capacitor de filme controla vários aspectos do dispositivo, mais significativamente sua tensão nominal. A tensão nominal de um capacitor pode ser aumentada pelos fabricantes utilizando filmes mais espessos e polímeros livres de defeitos de melhor qualidade. A disposição dos filmes, frequência de uso e filmes metalizados (descritos abaixo) são outras variáveis ​​significativas.

Como resultado da simplicidade inerentemente presente nos procedimentos de corte e enrolamento necessários para criá-los, os capacitores de filme podem ser construídos como dispositivos muito grandes. Para armazenamento de energia em aplicações de alta tensão, como sistemas de energia elétrica e usinas de energia, esses capacitores de energia são frequentemente empregados.

Características:

1. Construção não indutiva e autocorreção

2. Alta propriedade de resistência à umidade

3. Super características físicas e ambientais

As características de um capacitor de filme empilhado 15nF incluem:

  1. Small size: Stacked film capacitors have a compact design that makes them ideal for use in high-density circuit boards.
  2. Alta capacitância: Com uma capacitância de 15nF, este capacitor pode armazenar uma quantidade significativa de carga elétrica.
  3. Alta confiabilidade: Capacitores de filme empilhados têm um alto nível de confiabilidade, tornando-os uma escolha popular para uso em uma ampla gama de dispositivos eletrônicos.
  4. Baixa absorção dielétrica: Esses capacitores têm um baixo fator de absorção dielétrica, o que significa que eles podem carregar e descarregar rapidamente sem perder muita energia.
  5. Baixo ESR: Os capacitores de filme empilhados têm uma baixa Resistência de Série Equivalente (ESR), o que os torna altamente eficientes e reduz a perda de energia.
  6. Boa resposta de frequência: Esses capacitores têm uma boa resposta de frequência, tornando-os adequados para uso em aplicações de alta frequência.

Film capacitors use two plastic films that have been coated with a very thin layer of aluminum (metalized), which serves as the electrode. The dielectric may be referred to as metal foil or metalized film, depending on the electrode arrangement. Metal foil devices feature a greater resistance to component damage from short circuits, but are typically weaker against surge currents.

Film/foil capacitors or metal foil capacitors are made with two plastic films as the dielectric. Each is layered with a thin metal foil, usually aluminum, as the electrodes. The advantages of this construction type are an easy electrical connection to the metal foil electrodes, and its ability to handle high current surges.
Two metalized films are combined to create metalized film capacitors, while a plastic film serves as the dielectric. One or both sides are covered with an extremely thin ( 0.03 m[2]) vacuum-deposited aluminum metallization that acts as electrodes. Dielectric breakdowns or short circuits between the electrodes may not always result in component damage in this topology, giving it “self-healing” qualities. When compared to film/foil construction, this fundamental design enables the production of high-quality goods such as “zero defect” capacitors and wrapped capacitors with bigger capacitance values (up to 100 F and larger) in smaller cases (high volumetric efficiency). The reduced current surge rating of the metalized structure, however, is a drawback.

Especificações:

Dielétrico: filme de polipropileno

Eletrodos: Metal evaporado a vácuo ou folha de alumínio

Revestimento: Encapsulado em caixa de plástico retardador de chama reforçada selada com resina epóxi atendendo ao requisito de UL 94V-0

Condutores: Condutores axiais de arame estanhado

Norma de referência: IEC 384-16; GB 10190-1988

Catálogo climático: 40/85/21

Capacitância versus tensão nominal (UR):

0,001 µF-2,2 µF/100VDC

0,001 µF-2,2 µF/250VDC

0,001 µF-2,2 µF/400VDC

0,001 µF-2,2 µF/630VDC

Tolerância de capacitância: M = ±20%, K = ±10% e J = ±5%

Fator de dissipação: DF≤1,0% (a 20°C, 1KHz)

À prova de tensão: 1,6*UR Unidade:VDC (5s a 20°C)

Resistência de isolamento: C≤0,33µF, IR≥30000MΩ, C>0,33µF, IR*C≥5.000s (1 minuto a 20°C e R≤65%)

Resistência: 1000 horas com 125% da tensão nominal a 85°C. Após o teste:

ΔC/C ≤5%; ΔDF ≤0,40%, IR ≥50% do valor especificado (20°C, 1kHz)

Stacked film capacitors are a specialized type of capacitor that offers unique electrical properties and benefits for various applications. Their distinct design, combining multiple layers of thin film, sets them apart from conventional capacitors. In this article, we explore the construction, advantages, and applications of film capacitors.

Construction of Film Capacitors:

Stacked film capacitors are built by layering multiple thin film dielectric materials, often using a winding technique. Each layer is separated by a conductive electrode, creating a sandwich-like structure. The layers are then encapsulated to protect the assembly from external factors such as moisture, dust, and mechanical stress. The choice of dielectric material, electrode material, and layering technique can influence the capacitor’s performance characteristics.

Advantages of Stacked Film Capacitors:

  • High Capacitance Density: Film capacitors can achieve high capacitance values within a compact form factor. This makes them suitable for applications where space constraints are a concern.

  • Low ESR and ESL: Stacked film capacitors exhibit low Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL), resulting in efficient energy storage and discharge, as well as minimal energy loss.

  • Stable Performance: The layered construction contributes to improved capacitance stability over a wide range of frequencies and temperatures. This stability is vital for maintaining consistent circuit performance.

  • Low Noise: Stacked film capacitors’ low ESL and ESR, combined with their stable characteristics, make them well-suited for applications that require minimal noise interference.

  • High Voltage Tolerance: Some film capacitors are designed to withstand high voltage levels, making them suitable for demanding applications that require voltage regulation and energy storage.

Applications of Stacked Film Capacitors:

  • Power Electronics: Stacked film capacitors are commonly used in power electronic circuits for filtering, voltage regulation, and energy storage. Their stable performance and low losses contribute to efficient power conversion.

  • Pulse Power Systems: These capacitors find applications in pulse power systems, where they store and discharge energy quickly and efficiently, as required in applications such as pulsed lasers and electromagnetic pulse generators.

  • High-Frequency Circuits: Stacked film capacitors’ low ESL and ESR characteristics make them ideal for high-frequency applications, including RF filters, impedance-matching networks, and communication systems.

  • Medical Devices: In medical devices that require reliable energy storage and quick discharges, film capacitors play a role in defibrillators, medical imaging equipment, and laser-based therapies.

  • Automotive Electronics: Stacked film capacitors contribute to automotive electronics, such as electric vehicle powertrains, engine control units, and safety systems, due to their stability and efficiency.

Advancements and Future Prospects:

The field of stacked film capacitors is not static; ongoing research and innovation continue to push the boundaries of their capabilities and applications. Advancements in materials, manufacturing techniques, and design methodologies are contributing to the evolution of film capacitors:

  • Material Innovations: Researchers are exploring new dielectric materials that offer improved performance characteristics, such as higher capacitance, lower losses, and enhanced stability over a broader range of temperatures and frequencies.

  • Miniaturization: As technology trends toward miniaturization, efforts are being made to further reduce the size of stacked film capacitors without sacrificing performance. This is especially important for portable electronics and space-constrained applications.

  • Energy Storage Systems: With the growing demand for efficient energy storage solutions, film capacitors are being integrated into advanced energy storage systems. Their rapid charge and discharge capabilities make them valuable in applications such as hybrid and electric vehicles, renewable energy systems, and grid stabilization.

  • Integration with Silicon: Stacked film capacitors are being explored for integration with silicon-based components, enabling the creation of compact and high-performance microelectronic systems with integrated power storage.

  • High-Frequency Applications: As wireless communication systems and high-frequency technologies advance, film capacitors are finding new roles in enabling efficient signal processing, filtering, and impedance matching.

  • Reliability and Durability: Research is ongoing to enhance the reliability and durability of stacked film capacitors under various operating conditions, ensuring consistent performance over the product’s lifetime.

Stacked film capacitors, with their innovative layered construction, offer a range of benefits that cater to diverse application needs. Their high capacitance density, low losses, and stable performance make them valuable components in various industries, from power electronics to medical devices. As technology continues to evolve, film capacitors are poised to play an even more significant role in enabling efficient energy storage, power conversion, and reliable circuit performance. It’s important to choose the right stacked film capacitor for each application, considering factors such as capacitance requirements, voltage ratings, and environmental conditions. By harnessing the advantages of stacked film capacitors, engineers can elevate the performance and efficiency of their designs in a multitude of electronic applications.

produtos relacionados

blog

Contate-nos

solicite um orçamento